Retroviral gene transfer of epidermal growth factor receptor into HL60 cells results in a partial block of retinoic acid-induced granulocytic differentiation.

نویسندگان

  • L L Chen
  • B Gansbacher
  • E Gilboa
  • R Taetle
  • J Oval
  • M S Hibbs
  • C K Huang
  • M L Clawson
  • S Bilgrami
  • J Schlessinger
چکیده

HL60 cells are devoid of endogenous epidermal growth factor receptor (EGFR). They respond to retinoic acid and undergo terminal granulocytic differentiation. EGFR complementary DNA was introduced into HL60 cells by retroviral gene transfer. Scatchard plot showed that the binding characteristics are identical to those of A431 cells. HL60-EGFR cells were estimated to express 34,000 EGFR/cell (Kd = 5 nM). The tyrosine phosphorylation upon ligand binding is the first step of signal transduction. The dominant phosphotyrosyl proteins in epidermal growth factor-stimulated HL60-EGFR cells include a 170 kDa protein (EGFR itself), and 125 and 53 kDa proteins. The EGFR signal results in the induction of 92 kDa gelatinase/matrix metalloproteinase in HL60-EGFR cells, thereby providing evidence of the function of the exogenous EGFR and a semiquantitative measure of the EGFR signal. These HL60-EGFR cells offer a unique opportunity to examine the potentially important role of EGFR (c-erbB) in maintaining homeostasis between self-renewal and differentiation. c-erbB has been shown to play a physiological role in the self-renewal of the very early avian stem cells which do express EGFR. The v-erbB (double truncated EGFR) has been shown to cause avian erythroblastosis. We found that these HL60-EGFR cells responded to retinoic acid differently from the HL60-control cells. A partial block of only 45% granulocytic differentiation and concomitant proliferation was noted, consistent with a shift of balance between self-renewal and differentiation toward the former.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effect of Fibroblast Growth Factor-2(FGF-2) and retinoic acid on differentiation of mouse embryonic stem cells into neural cells

Introduction: Embryonic Stem (ES) cells as pluripotent cells derived from the inner cell mass of blastula can differentiate to neural cells in vitro and this property is valuable in studies of neurogenesis and in the generation of donor cells for transplantation. In this regard, the propose of this research, was the study of the role of two important factors in the development of neural syst...

متن کامل

9-cis-Retinoic Acid and 1,25-dihydroxy Vitamin D3 Improve the Differentiation of Neural Stem Cells into Oligodendrocytes through the Inhibition of the Notch and Wnt Signaling Pathways

Background: Differentiating oligodendrocyte precursor cells (OPCs) into oligodendrocytes could be improved by inhibiting signaling pathways such as Wnt and Notch. 9-cis-retinoic acid (9-cis-RA) and 1,25-dihydroxyvitamin D3 (1,25[OH]2D3) can ameliorate oligodendrogenesis. We investigated whether they could increase oligodendrogenesis by inhibiting the Wnt and Notch signaling pathways.Methods: Co...

متن کامل

A New Two Step Induction Protocol for Neural Differentiation of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells

Background: In this study, we examined a new two step induction protocol for improving the differentiation of human umbilical cord blood-derived mesenchymal stem cells into neural progenitor cells. Materials and Methods: Human umbilical cord blood-derived mesenchymal stem cells were first cultured in Dulbecco’s modified eagle medium supplemented with 10% fetal bovine serum in a humidified incu...

متن کامل

Multipotent hematopoietic cell lines derived from C/EBPa(2/2) knockout mice display granulocyte macrophage–colony-stimulating factor, granulocyte– colony-stimulating factor, and retinoic acid–induced granulocytic differentiation

The transcription factor C/EBPa is an important mediator of granulocyte differentiation and regulates the expression of multiple granulocyte-specific genes including the granulocyte–colony-stimulating factor (GCSF) receptor, neutrophil elastase, and myeloperoxidase. Indeed C/EBPa knockout mice display a profound block in granulocyte differentiation. To study this block in granulocytic different...

متن کامل

In-vitro Differentiation of Human Umbilical Cord Wharton’s Jelly Mesenchymal Stem Cells to Insulin-Producing Cells

  Background & Objective: Diabetes is a major chronic metabolic disease in the world. Islet transplantation is a way to treat diabetes. Unfortunately, this method is restricted due to graft rejection and lack of donor islets. Mesenchymal Stem Cells (MSCS) have the ability to differentiate into Insulin-Producing Cells (IPCs). In this study, Human Umbilical Mesenchymal Stem Cells (HUMSCS) were in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research

دوره 4 9  شماره 

صفحات  -

تاریخ انتشار 1993